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1, INTRODUCTION

Systems, Science and Software (S3) has begun a study to develop methods
which can be used to determine the sensitivity of numerical solutions of sets of
coupled differential equations to uncertainties in modeling parameters entering
the calculations, The first year effort hag been funded by the Advanced Research
Projects Agency (ARPA) under ONR contract N00014-71-C-0347. This report

describes work performed in this effort,

ARPA's interest in this problem has been stimulated primarily by a
need on the part of ¢he defense community to develop computational models to
describe certain weapons effects in which non-equilibrium chemistry plays an
important role., For such phenomena an accurate treatment of the kinetics of
the chemical system requires that:

(1) Al of the relevant Species and the important reactions

which occur among them are included,
(2) Accurate valyes of the important rate coefficients are

known,

For many applications there is much debate, largely based on intuition, about

rate constants,

A second motivation for the research is to provide tools whereby the
military and technical community can probe large complex systems to under-

- stand more fully the principles by which their constituent parts interact. In this

A —



respect, our methods are not limited to chemical systems, but may be applied to
a wide variety of systems for which computational modeling is appropriate. For
definiteness, however, t“e methods will be described in the context of non-

equilibrium chemical systems to which they have been exclusively applied to date.

The methods which are being developed make use of the capability to
solve the chemical kinetics problem several times for different values of the
rate coefficients within their expected bands of uncertainty, and to interpret the
results of these calculations in such a way as to determine the relative sensitivity
of the results to the uncertainties in rate coefficients. It is useful to introduce the
concept of an "output function" which in this report will mean a number which is of

interest calculated from the model, Examples of output functions are:

® One of the concentrations at a particular time,
® A concentration maximum over all time,

® The time at which a concentration reaches some
threshold, ’

® The maximum tempcrature attained by the system.
e The radiation intensity at a particular point in space
at a specified time,
An output function is regarded as a function only of the rate coefficients of the
model, and therefore uncertainties in the rate coefficients contribute to an uncer-

tainty in the output function,

Since the dependence of an arbitrary output function will be, in general,
a complicated, non-linear function of the rate coefficients, traditional analytical
investigations are usually impossible. The importance of the various rate coeffi-
cients may not be determined by investigating each one separately holding the
others fixed because of the complex interaction between reactions, Furthermore,
the output function may be very sensitive to the rate coefficients in a localized

region within the uncertainty limits rather than at the upper and lower bounds of



uncertainty. Such regions would be missed by a sensitivity analysis which examined

only maximum and minimum values of the rate coefficients.

Mathematically, the problem reduces to that of investigating a non-linear
function of many variables over a domain of its arguments., The procedure is
therefore characterized by two parts:

(1) Selection of a number of points at which one will evaluate

the function.,

(2) Determination of the relative sensitivity of the function to the
various arguments on the basis of the function evaluations,

The methods which have been developed prescribe a sequence of values
of rate coefficients at which the output function is evaluated. All of the rate coeffi-
cients vary simultaneously along the sequence of points, Two different approaches
have been formulated which we shall call the Fourier method and optimization
methods. In the Fouricr method, the sequence of rate coefficient values for the
analysis is presc'ribed before any calculations of the output function are obtained,
whereas in the optimization methods, later points in the Sequence are determined
by the values of the output function calculated at earlier points, In the Fourier

" method only values of the output function are computed whereas some of the

optimization methods require the calculation of various partial derivatives of

the output function with respect to the various rate coefficients.

The methods are designed to accommodate output functions of an arbitrarily
large number of rate coefficients, although the cost of performing the sensitivity
anzlysis increases rapidly with this number. To date the methods havé been
applied only to the relatively simple systems described below. The systems are
sufficiently simple that some results of the methods can be qualitatively verified
by intuition or hindsight, The three systems which have been considered in some

detail are:



(1) Various "simulation functions' which are merely
analytical functions of several parameters,

(2) A chemical system describing the high temperature
dissociation of air (five concentrations, ten
reactions),

(3) A chemical system describing the combustion of
hydrogen (six concentrations, eighteen reactions),
While these examples are extremely simple compared to the systems for
which the methods are needed most, they do demonstrate the feasibility of the

methods, and strongly suggest their applicability to more complex systems,

In order to apply the methods to chemical systems, one must be able
to solve a set of chemical rate equations. Many techniques have been developed
for such problems, and a code called KEM developed at S3 using the Gea;‘ algorithm
was used. Investigating the accuracy or efficiency of the integration technique or
comparing various techniques was outside the scope of the research effort, The
KEM calculation is essentially regarded as a subroutine which gives an output

function for a specified set of rate coefficients,

In Sections 2,1 through 2.4 the formulation of the Fourier method is
presented, and in Section 2. 5 the results of the sensitivity analysis using this
method for the two chemical systems described above is summarized, In
Section 2.6 a Monte Carlo technique for obtaining the same results is compared

to the Fourier method.

In Section 3.1 the optimization methods are described and in Section 3.2,
comparisons of several optimization methods are described for a simulation func-
tion. In Section 3.3 an optimization method is applied to the air dissociation
chemical system. In Section 4 a summary of the work and proposed extensions are

presented.



2, THE FOURIER METHOD

2.1 FORMULATION OF THE METHOD

The Fourier method is an attempt to investigate certain characteristics
of a scalar function of several variables over a convex domain by simply evaluating
the function at a finite set of points within the domain. More specifically, the
function is cvaluated at a set of points along a curved line within the domain,

While the formulation of the method is independent of the nature of the output
function, and the variables on which it depends, the notation and phraseology of
this discussion will reflect the context of a specific application in which the output
function, f, is a concentration of a chemical species in an isothermal, constant
density rcacting system, and the independent variables ki » i =1, n are the rate
constants which appear in the kinetic equations which describe the reacting system,
The region of interest in the k-space is that spanned by the estimated uncertainties

in the current determination of the rate constants,

The curved line on which f isto be cvaluated is defined by the single

parameter, s, by the specification

0 ui
k =ki e (2.1)

and
o)

u =u
i i

sinwis,i=1,n . (2.2)
The introduction of the parameter s provides a convenient prescrip-

tion for varying all of the rate constants simultaneously, By selecting a set of

8 values, a set of values of k are obtained distributcd within the n dimensional

“ uncertainty domain,



The modus operandi of the Fourier method is to seleet a set of distinct
"input" frequencics {wi} » onc for cach reaction rate being investigated. A set
of values of s are also chosen, and the output function f is evaluated for each
value (for the set of {ki} ’spceified for each value of s through Equations

(2.1) and (2. 2)). f may thus be viewed as a function of s ,

f(s) = flkl(s). ky(8)s oo, k&) (2.3)

and this funetion is Fourier analyzed to obtain the sine and cosine amplitudes

corresponding to various frequencies.

2.2 QUALITATIVE INTERPRETATION OF THE FOURIER

AMPLITUDES, INTERFERENCES, AND ALIASING

It is convenient to assume for the moment that all the frequencies are
incommensurate (irrational), It is impossible to represent such frequencies
in a digital computer, but the excrcise sheds light on the qualitative interpretation
of the amplitudes, Furthermore, it will be assumed that f is an analytic funetion
of all the rate coefficients in the domain defined by the uncertainties, If the ampli-
tudes corresponding to input frequency W, and its harmonies are very small, the
uncertainty in the ith reaection rate is unimportant in determining the uncertainty of f.
If, on the other hand, the amplitude of w, is large, the contribution from the uncer~
tainty of the ith rate coefficient to the cutput function is large., In Section 2.4
the magnitude of the Fourier coefficient will be related to an average of 9f/du

over the u-space characterizing the uncertainties.

In practice, the unique identification of a frequency with the rate coeffi-
cient it represents may be obscured by two effects: interferences between
frequencies, and aliasing. Interferences arise from the fact that incommensurate
frequencies may not be chosen since they eannot be represented on a digital
computer. Commensurate frequencies have the property that they cannot be

linearly independent with rcspeet to integer coefficients, If, for example,



= , ;’.4
wl+2w2 w3 2.4)

the amplitudes eorresponding to wg will refiect not only the effeets of the uneer-

tainty of kg, but also k1 and k2 through the interferenee.

Aliasing arises whenever 2 finite number of points are ehosen on the
interval to evaluate the Fourier amplitude, and the effeets are more serious when
evenly spaeed points are ehosen. For example, if N equally spaeed points are

ehosen,the amplitudes for w_ will unavoidably inelude the amplitudes of a eomponent

L
with frequeney @t present in f(s) whieh satisfies the relation

wL =mN - wM (2. 5)

where m is an arbitrary integer.

The eurrent method takes the frequeneies wi to be integers and
evaluates the output funetion at evenly spaeed diserete values of s on the inter-
val 0<s< 27, This ehoice was motivated by the goal of redueing as mueh as
possible the number »f points to be evaluated to obtain the Fourier amplitudes as

shown in the next seetion,

2.3 CHOICE OF FREQUENCIES AND THE METHOD OF FOURIER
ANALYSIS
The Fourier sine amplitude eorresponding to an arbitrary frequeney

W assoeiated with the Lth rate eoeifieient is defined as
T

1
AL —'}lr.nw T J’ sin w 8 f[kl(s)....,kn(s)]ds , (2.6)
0

and the eosine amplitude is defined as the same integral with the sine function

replaeed by a eosine funetion, Sinee this integral is to be performed numerically



&nd it is imperiant to minimize the number of s points used in the integral, it

scz2me advantageous to rcplace this integral over the infinite interval by one
over a finite interval. Tnis may be done proviced only rational frequencies are
present in the functior. f. For oufput functions which are sufficiently smooth,
one can ins;xre that only rational frequencies apvear by specifying that the input
frequencies themselves are rational, It is convenient to further simplify the
integral by thc transformations in Appendix A which show that Equation (2. 6)
with rational frequencics reduccs to Equation (2.7) with integer frequencies w;

defining the k's through Equations (2.1) and (2. 2),

2n
j ds sin w'Ls f[kl(s), ...,kn(s)] < (2.7
0

L
\b 14

AL=

~e

In the remainder of this section, integer input frequencies will be assumed.

2,3.1 Choice of Noninterfering Frequencies

Since integer frequencies are to be input, various sums and differences
of those frequencies will coincide. The frequencies must be chosen so as to

minimize these interferences in some sense.

We define an interference of nth order as a linear combination of n
frequencies with coefficieats +1, Thus, wl -2 w, is an interference of third

order, while wl - Wy - 2w2 - wl is also an interference of third orrder, that is,

wa - 2w2 .

In order to understand the meaning of the interfcrence amplitudes in
relation to the variztion of the output function with the ratc constants, it is con-
venient to consider f as a function of the various u; instead of as a function of
the ki through the transformation in Equation (2.1). Assuming that f isa

bounded, continuous function of u with partial derivatives of all orders in the



region —u: < ui < u?, it may be expanded in a Taylor series about the point

ui=0, i=1, n,

n
f(ul""’un)=f0+z

n
+E (f..u.u tio.ouu +.,, )
yij ijj i
i#j
n
* Z (fijk 5 T Y Yy
i#j#k=1

(2. 8)
where, for example,
2
_ _97f 1
fij " Bu.0u, 2! . (2.9)
LI
The function f can also be expanded in a Fourier series
o0
f(s) = Bo + E (Aﬁ sin {s + Bﬂ cos fs) . (2.10)

1=1



Substituting u, = u? sin w8 into Equation (2.8) a series is obtained, the terms

of which contain products of various powers of trigonometric functions, i.e,,

sin® wis sinq sz . (2.11)

By using the identity
iwi sp iw.sq is(pwi+qw.)

c e 1 -e Yo, (2.12)
and realizing that Py +qwj is integer, one observes that the two series contain
exactly the same terms making the identification of the A {» By with various sums
of partial derivatives evaluated at the point u, = 0, i =1 , n. Furthermore, a p th
order interference in the Fourier series arises from terms in the Taylor expansion
of order p or greater. In fact, if f were linear in all u's, the only fréquencies

appearing the Fourier decomposition would be the input frequencies.

The assumption is tacitly made that, in general, high order interferences
(and, therefore, high order terms in u) are smal' compared with lower order inter-
ferences and, therefore, it will be adequate to select the input frequencies in such a
way as to eliminate effects of interferences below, say, M th order., Interferences
above Mth order will give rise to inaccuracies in the amplitudes. From the stand-
point of interferences, therefore, one prefers to chooéc fi-equencies consistent with
large M, which turn out to be relatively large integers. On the other hand, the
number of output function evaluations necessary to evaluate the Fourier amplitudes
of large frequencies is greater than that necessary for small frequencies, The
method which has been investigated to date makes use of frequencies for which

no interierences of the order of less than five coincide with the input frequencies,

16



2,3.1.1 Numerical Firocedure for Determining the Frequencies

The method currently used to determine the integer input frequencies,
Wy is essentially a trial and error procedure. The object is to find a set of
n integers w. such that no iiterferences of the order of four or less will coincide
i

with an input frequency. Explicitly,

P+ qu +Twy +8u A, i#m#L £k #j

where w .wk,w P wm and wi are input frequencies, and the. coefficients

i
obey

-4<p,q 1,84 ,
and

ol ]« el o <1

An obvious simplification is made by chosing all odd integers for the
input frequencies so that there are no coincidences with second order or fourth

order interferences. The only conditions that remain to be satisfied are that

W, - wj # W) = W) (2. 14a)
and
w, +c.»j # W =Yy . (2. 14b)

The first step is to find an ordered set of differences such that Equa-

tion (2, 14a) is satisfied, that is, a set of di such that

m
d* = E d (2.15)

i=1

44



are distinct for 1< m¢n-1. This is done recursively, and while there exist
many solutions for a particular n, one wishes to find the set with the minimum

largest difference d
max

n-1

d =E d, (2.16)
max 1

i=1
which detcrmines, in part, ihe largest frequency.

The process proceeds as follows. A table is begun for n=3, with the
ordered set of frequencies wl < w2< Wg and the ordercd set of differences,

d1 = w2 - and d2 = w3 - wz- di are determined to be the smallest

possible even numbers (excepting 2), i.e.,

The difference d; = d1+ d2 = 10also occurs and is distinct from d1 and d2 .

It is convenient to express the results in a triangular table

4 6
10 .

To continue the process for n=4, one chooses d3= 8 (must be distinct) and the

d* are determined by forming the diagonal as shown below

i= 1 2 3
4 6 8
10 14
18

from upper right to lower left (i=n- 1, i=1), the element in the ith column being

12



the sum of the diagonal in the i+1 st column and the difference appearing at the
top of the ith column. Tke successive di are chosen so that no number in the

ev.tire tablc is repeated.

One is not restricted to choosing the next di to be the lowest unused
even integer, but experience shows that as a general rule this choice will result
in the lower frequencies., Two sets of differences have becn calculated and are
presented in Tables 2,1 and 2.2, The set of differences in Table 2.1 use the
lowest possible unused differcnce to increment n, while in Table 2,2 d2 was
taken not to be the lowest unused even number, 6, but 8, It appears that the
frequencics irom either method are equally good, and that the results are not
strongly dependent on the ordering of small differences. Furthermore, since
the even numbers between d1 and dn which are omitted is relatively small,
it appears that little improvement could be madr by finding the optional ordering

since d would not change significantly.
max

The sct of differences for n ordered frequencies is the set of the first
n - 1 differences of the top row in either table. For example, for n =6, the

differences in Table .2 are: 4, 8, 6, 10,20,

After a set of differences are found for a particular n, the whole set
of frequencies is detevmined by specifying the lowest frequency. Inthe example
above, with n=6, one assigns the differences in reverse order and assigns
=1 to obtain the frequency set: 1, 21, 31, 37, 45, 49. The second step is to

1
add to all frequencics the same integer until Equation (2, 14b) is satisfied,

W+ wj# w - W (2.17)

Frequencies for which no interferences of order less than 5 coincide with
an input frequency have been calculated for n< 19 and the frequency sets are

shown in Table 2. 3.

13
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Table 2.3

FREQUENCY SETS AND CORRESPONDING NUMBER OF
POINTS AVOIDING INTERFERENCES AND
ALIASES OF INTERFERENCES THROUGH 4th ORDER

Dimensionality Frequency Set Minimum Number of Points
5 ii, 21, 27, 35, 39 142
5% 2, 42, 62, 74, 90 191
6 1, 21, 31, 37, 45, 49 182
6* 2,42, 62, 74, 90, 98 231
7 17, 39, 59, 69, 75, 83, 87 334
8 23, 55, 77, 97, 107, 113, 486
121, 125

9 19, 59, 91, 113, 133, 143 630
149, 157, 161

10 25, 63, 103, 135, 157, 177, 806
187, 193, 201, 205

11 41, 67, 105, 145, 177, 199, 974
219, 229, 235, 243, 247

12 31, 87, 113, 151, 191, 223, 1158

' 245, 265, 275, 281, 289, 293

13 23, 85, 141, 167, 205, 245, 1374
277, 299, 319, 329, 335, 343,
347

14 87, 133, 195, 251, 277, 315, 1814
355, 387, 409, 429, 439, 445,
453, 457.

15 67, 143, 189, 251, 307, 333, 2038

371, 411, 443, 465, 485, 495,
501, 509, 513

16 73, 169, 245, 291, 353, 409, 24486
435, 473, 513, 545, 567, 587,
697, 603, 611, 615

17 85, 145, 241, 317, 363, 425, 2734
481, 507, 545, 585, 617, 639,
659, 669, 675, 683, 687

18 143, 229, 289, 385, 461, 507, 3310
569, 625, 651, 689, 729, 761,
783, 803, 813, 819, 827, 831

19 149, 275, 361, 421, 517, 593, 3848
639, 701, 757, 783, 821, 861,
893, 915, 935, 945, 951, 959, 963

*These sets of 5 and 6 frequencies are not minimal, but have been used and are
only included for completeness. They are also free of inteferences and aliases
of order less than 5,



2.3.2 Fourier Analysis and Avoidance of Aliases

The Fourier analysis could be performed either by evaluating f at N

evenly spaced or unevenly spaced points on the interval (0, 2r). Evenly spaced points

are chosen although it is not certain that it is an optional choice. Given evenly

spaced points, howeve., it is convenient to replace the integral in Equation (2.7)

by a sum. Consider the sum

N
2 ; 2nf 27
N e w. — ="
Ai N E sm(LN)f(N) . (2.18)
=1
It is shown in Appendix B that

¥ =
AL AL + error , 2. 1’9)

where the error terms called "alias amplitudes" are the amplitudes of various

interference frequencies:

o0
SEEoR = Z Z AmN- @) @. 20)

m=0 j

where wj is any frequency appearing in f satisfying the relation

(2.21)

mN -~ wj = wL ,

where m is an arbitrary integer. The number N is chosen so that Equation (2.21)

is not satisfied for wj an interference of order less than 5 and w, is any input
24

frequency. This number is determined by calculating for a trial N

mN - wL

17



where wL is an input frequency, and comparing this number with each inter-
ference frequency through fourth order. N is the minimum value of N for
which there are no coincidences. The number N for the frequency sets in

Table 2.3 is also shown,

2.4 QUANTITATIVE INTERPRETATION OF THE FOURIER AMPLITUDES;
ALTERNATE WEIGHT FUNCTIONS IN u SPACE
One can view the Fourier method as being characterized by a sampling
prescription in n-dimensional u space in addition to an analysis of the output
function evaluated at the selected points, The result of the method depends
of all the points sampled, and we show below that certain Fourier amplitudes
are related to averages of the output function with various weight functions over

the n-dimensional u space.

It is shown in Appendix C that if f is a polynomial function of the u's
of order p-1, and the input integer frequency set is chosen so that no interferences
of order less than p coincide with input frequencies, then the oniz-dimensional
integral corresponding to the sine amplitude of input frequency wp is equal to an

n-dimensional integral over u Space:

2w
1 .
AL 3y f ds f(ul(s), uz(s) un(s)) sin w 8

o

(2.22)

u u
- 2 = u fu,, u_, «v.u)
du du du L 1 2 L

o 1. 2°° n o n 2

‘ 0 o u u
Y Uy “ L | I uwWVi- ( -l)
. i 0

i=1 uL

-1
0

(This equality does not hold for functions f of order higher than p-1 and an
error term appears proportional to (f(p)/zp -1) as shown in Appendix C,) This

18



Fourier amplitude is therefore equal to the Lth component of the centroid,

weighted by the function

i
n Y
[TV (%)
i=1l u,
1

An alternative form of the multiple integral may be dcrived by integrating by

W(u) =

(2.23)

parts with respect to uy i.e.,
uo uo
H n
A_= L3 [ d du
L _n Uy oo n UL
T o o]
-u ~u
1 n

The weight functions in these multiple intcgrals emphasize various regions
of u-space. In the form in Equation (2. 22), all edges of the hypercube are
emphasized equally, whereas in the integral in Equation (2,24), the distribution
is uniform in up but emphasizes the edges in the other dimensions, Efforts

to modify this weighting will be described below,

The implication of Equation (2, 24) is that the Fourier cocfficient may be
interpreted as an average over the whole uncertainty region of 9f/3 u; and it
therefore represents a measure of sensitivity, Alternatively, by analyzing {nf
instead of f onc obtains the measure of sensitivity of the relativc uncertainty in
f to the uncertainty of the various ratc coefficients, i,e., an average of 'lfgf,—‘ .

L

The cstimated experimental uncertainty, u?, reprcsents the half width

of somc distribution of probable values for the reaction ratc, Therefore, one

can argue that the sampling proccdure should emphasizc the region of u-space

19



near the origin. The appearance of the weight functions which emphasizc the
boundaries of the region may therefore be undesirable. One ean alter the

weight funetion by ehoosing an alternative definition of u, (sec Equation (2. 2):
u, =u’v, (sinws) (2. 25)
i i i’ '
and choosing vi to be a monotonie funetion of sin wi 5.

We will demonstrate this by finding vy sueh that the weighting funetion
in Equation (2, 22) is given hy

n 2,02
= -u,/ui
W(u) = ne ! . (2. 26)
i=1 '

Assuming that { is a polynomial in the u's of order p-1, and using the

same argument as those in Appendix C, one can show that

27
—3 1 .
AL- @) f ds sin wL s f(ul(s), un(s»
o
u’ o
' ! u 2 ds
== I j LTI
o dul... dun ° L1 w; f(ul,uz,,,,un) . (2.27)
. 0 uy =l MY
=U -u L
1 n
Setting
2
ds ds -ll.z/u0
woWE e (2. 28)
du, u0 dv ), g
1 i i i

20



onc may solve for vi(si) . A solution for this equation for -1 < vi <1 is
v.b) =erf ™ (Z—e—,ffﬁ sin™" bi) » B2 0, (b)) = v,y (2.29)
where

b, = sin w, s, (2. 30)
1 11

and

-1/2 < sin”! b.gm/2 .

This gives for the right side of Equation (2.27)
2

o© uo u,

1 {3)
—h du, ... u I l_[ Ui —Lf(u u,...,u) (2.31)
2erf(1)" 1 u’
(2erf(1)) -u‘l) -uz L i=1 vy

One can integrate this by parts over u_ to obtain an average of 3f/0u, witha

L L

Gaussian weight function remaining over all u's except uy s and a weight
function in the up dimension proportional to

uy 2 u 2

L y .0 L .
H(u;) = | du} ‘L - f du! (/) (2.32)

L L L L L
-o0 '-w

which is also peaked near up = 0.

Some calculations reported in the next section used this formulation of the
Fourier method, but the results do not differ significantly from those obtained

with the original formulation,
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2.5 AFPPLICATIONS OF THE FOURIER METHOD

The Fourier mcthod has been applied to various simulation functions
(analytical functions) and to results calculated from models of two chemical
systems, The results for the chemical systems will be prescnted in this
section,

2,5,1 The Nitrogen-Oxygen (N-O) System

The N-O system is modeled by the following set of chemical reactions,

rate constants and equilibrium constants:

02+M.-=20+M kl’ K1

N2+M=2N+M kz, K2

NO+Ma=3N+0+M k3,K3
+ =

N2 O &NO+N k4, K4
+ =

0, + Nz NO+0 ky, K,

and is characterized by the following ratc equations,

dc1
& 1(°1M'_ °M>'k5(°1°4'T °5°2) ’
1 5
dc
2 1 2 =
o —2k1 (clM-Kl czM) +k5 (c1c4-K5 c5c2)

22



and

where

and

dc, 2
oy =-k2 ( 3M-Ez-c4 M) - k4 (03 cz-k: 05 04),
de 1 1
& 2Ky (°3M'K_2 €4 M) Tk (°5M'E; °2°4M)
K5
+k4 (cscz-k—.c4) -ks(c1°4_§- c5c2) .
4 5
de
S _ 1 1

& K (°5M K, °4°2M) tky ("3"2 K, °5°4)

+k_([c.,c -i-cc (2.33)

5 14 K5 52
cl—[QZ]
c, = [0]
cg = [N2]
¢y = IN)
e, = [NO)
5

M= E c, - (2.34)

The assumption of equal reaction rates with each species acting as a third body,

M, for reactions 1, 2, and 3 simplifies the system. ki are the rate constants

for the reaction in the fcrward direction as written, and Ki are the equilibrium

constants, The rate constants for the reverse reactions are related to ki by the

relation
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8

ki
K, =7 . (2. 35)

k
i reverse

The systém was assumed to react at constant temperature, 6000°K, and
constant density beginning at t = 0 with only N2 and O2 present, The reaction
rates and equilibrium constants used and the snitial conditions assumed are
shown in Table 2,4. A plot of the time evolution of this system is shown in

Figure 2,1,

This chemical system is interesting because it has in addition to the
monotonic concentrations, the NO concentration which passes through a maxi-

mum near t =101 sec.

The rate constants in Table 2,4 represent experimentally obtained rate
coefficients, and while the uncertainties of these particular rate constants are
not large, it was arbitrarily assumed that the experimental uncertainties for
all the coefficients was +2 orders of magnitude. In the sensitivity analysis,

values of the rate coefficients were investigated lying in the range

+
k =ko : 4,606

15 ’ i=1,5 . (2. 36)

Throughout the course of the study, various sets of frequencies were
used, some were not the minimal set described earlier, but all sets had the
property that no interferences of the order less than 5 coincide with a fundamental,

The most common set of frequencies used was
(2, 42, 62, 74, 90)

for which the lowest number of eveniy spaced points which avoids aliasing of

fourth order interferences is 191.
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Table 2.4

PARAMETERS AND INITIAL CONDITIONS
FCR CALCULATIONS OF THE N-O SYSTEM

Initial Conditions
[N2] —8x10°° moles/cc

[o,] = 2x 108 »

Nominal Values of the Rate Coefficients

k; -8.5x10%° (moles/cc)-1 sec t
K°=3.0x10" "

2
kK°=8.0x10° v

3
K°=0.0x10t% v

4
kg =8.0x 10l .

Equilibrium Constants

K =7.8x 1074 (moles/cc)
7

K2=1.0x10

K3 =1,3x10
-3

K5=5.9x101 =

5 "

25
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Figure 2.1 — Time evolution of the N-O system for the conditions in
Table 2.4.



Parameterizing the rate constant parameters, u by the relation

u, = 4,606 sin w, 8 (2.37)

and varying s in the range 0< s< 2w, the concentrations of the various
species were calculated by integrating the rate Equstions (2.2) to a particular
time for each of the 191 s values., The 191 values of a concentration at a partic-
ular time defines an output function which may be Fourier analyzed by computing

the Fourier coefficients corresponding to the input frequencies according to formula

N
2 2L _(2nf
=& : =—=], N=191 .
AL N sin =g f( N ) (2. 38)
2=1

m . The relétive

whera f (?NLI) is the output function evaluated at s =
magnitudes of these amplitudes is taken to be 2 measure of the ralative
sensitivity of the uncertainty in the output function to uncertainty in the cor-

responding rate coefficients,

As an example of f(s), Figure 2.2 shows a plot of the NO concentration
as a functionof s at t = 10"4 sec. The curve consists of points corresponding
to the NO concentration for each discrete value of s, which have been connected
by straight lines. The Fourier coefficients of this function are presented in
Section 2,5.1, 2,

2.5.1.1 Interpretation of Results for the N-O System
at 10-6 gsec

The N-O system was run to a time of 10~ ° sec and the Fourier analysis
done on the concentrations at that time. The results for this calculation are

presented in Table 2, 5,

27
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Figure 2.2 — Example of an output function as a function of s. In this
case the output function is defined to be the concentration

of NO att = 10(-4) sec for the particular set of initial

conditions in Table 2,4,
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Table 2,5
SENSITIVITY OF THE CONCENTRATIONS AT 10-'6 SEC
TO UNCERTAINTIES IN THE RATE COEFFICIENTS FOR
THE N-O SYSTEM

Input Frequency Corresponding Rate Coefficient Sensitivity
9
[02] x 10
2 kl -4.47
90 k5 ~0,0244
14 k4 -0, 0227
42 k2 -0,00047
62 k3 -0,00039
------------ [0 x10° R
2 k1 8.53
74 k4 -0, 36
90 k5 0.018
62 l_<3 -0, 029
42 k2 0.0027
9
----------- [N2]x10 I I
2 k1 -0, 389
74 k4~ -0, 386
42 k2 -0, 0087
62 k3 -0, 0039
90 ks ~0,00103
------------- [N]xlo9 e e e e e e a -
2 k1 0.367
74 k4 0.362
90 k5 -0, 028
62 k3 -0,013
42 kz -0.011
----------- [No]x101°. N _ RN Y
2 kl 0.412
74 k4 0.410
90 k5 0,031
42 kz -0, 0066

62 kg -0.0048




In the column labeled ""Sensitivity" are listed the Fourier amplitudes
corresponding to the rate coefficient shown, At this early time (see Figure 2. 1)
only reaction 1 is important in the production of O from O2 and, thus, only
the uncertainty in k1 contributes to these concentrations. The sign of the
amplitude may be understood by Equation (2.24) showing the amplitude proportional
to an average of 9f/au, Thus, the negative sign in the sensitivity of O2 to k1
means that Bf/akl is negative, as one would expect, Since k2 is small, the
primary source of N is through reaction 4, One can show that at these early
times, when the O2 and N2 are not substantially depleted, the concentrations
of NO and N will be proportional to the product klk 4 The Fourier coeffi-

cients of these species are therefore (approximately) symmetric in kl’k 4

Iu is desirable that the results are .ndependent of the input frequencies,
Small amplitudes can depend strongly on the inpui frequency set through inter-
ferences obscuring the fundamentals, This provides a means for estimating the
effects of interferences and aliases; for example, one can reassign the frequencies
to the various raie constants and repeat the analysis, If the relative sensitivity
is invariant under permutations, the result is reliable, If it varies with permuta-
tion, the result is questionable, For the amplitudes in Table 2.5 only the smallest
amplitudes will be unreliable, A comparison of results under permutation is pre-

sented below for another set of output functions,

2.5.1.2 Interpretation of Results for the N-O System at
10-4 sec
The N-O system with the sam« initial conditions and rate constant speci-
fication was run to t= 10-4 Sec, and the various concentrations were analyzed

with the results shown in Table 2, 6,

Since the time is later, more reactions (and more uncertainties) have
come into play, If we arbitrarily choose a factor of 10 to Separate the "important"

from the "unimportant" rate uncertainties, [02] and [O] are sensitive only to

30
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Table 2,6

SENSITIVITY OF THE CONCENTRATION AT 10.“4 SEC
TO UNCERTAINTIES IN THE RATE COEFFICIENTS
FOR THE N-O SYSTEM

Input Frequency Corresponding Rate Coefficient Sensitivity
8
-------------- [0,) x 10° - e e
2 k, -1.1
80 k5 -0.147
4 k4 -0,087
62 k3 -0,069
42 k2 ~0, 044
-------------- O)x10® - _______.
. 2 k1 2,17
62 k3 0.228
80 ks 0.164
42 k2 0.078
74 k 4 -0,00146
------------- [N,) x 109 - oL __...
74 k4 -2,6
2 kl -2.3
62 k3 -1, 0
90 k5 -0,70
42 kz -0, 55
.............. My x20® oo ___.
2 k, 4,3
74 k4 3.3
62 ka 3.0
42 kz 0.98
90 k‘i 0.125
------------- [No) x 10° e I VI R,
74 k4 1,m
90 k‘i 1,29
62 ‘ka -0, 91
2 k1 0.23
42 ko 0.124
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the uncertainty in k1 . On the other hand, the other concentrations depend on
several uncertainties. It is interesting that the most direct route to produce

N, reaction 2, is relatively unimportant in determining any concentration.

In order to investigate possible errors in these results due to frequency
interference effects, an additional analysis was made changing the frequencies
assigned to the various rate coefficients. A cyclic permutation of the frequencies
was used which caused different interferences of order > 5 to coincide
with the fundamentals. The problem for which this comparison was made was the
same as that described in Table 2.4 except that one equilibrium constant, K5 )
was changed to 5.9 x 10-1 which changed the reverse reaction rate, k5 . The re-
sults of this calculation are presented in column II of Table 2.7, The problem
with modified K5 was also run using the same frequency set as that used in
Table 2.6 and the results presented in the column labled "I" so that direct compar-
ison is possible. Only the small amplitudes are changed significantly. In no case
did the sign change due to permutation although the rank based on the magnitude of

the various small amplitudes changes occasionally,

In Section 2,4 an alternative parameterization of k1 in terms of the
parameters was discussed which resulted in a Gaussian weight function for the
multi-dimensional integral, In columns III and IV the results for the same N-O
system with modified K5 are presented, with the original frequency set used in
column Il and the permuted set used in column IV, Again, significant differences
due to permutation occur only in the relatively small coefficients. It is interesting
to compare the results in columns I and I due to the different sampling of
points., The formulation in column I favors poihts near the extremes of the
uncertainty ranges. The general tendency for the magnitude of the amplitudes to
be slightly smalier in colurun III indicates that 8f/8u tends to increase with u
in general. There do not seem to be significant differences in the results between

parameterizations of k, . Moreover, the more complex parameterization will, in
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Table 2,7

EFFECTS OF PERMUTATION OF FREQUENCIES AND ALTERNATE
WEIGHT FUNCTIONS ON SENSITIVITY ANALYSIS,
CONCENTRATIONS AT 10~4 SEC FOR THE N-O SYSTEM

Rate Cocfficient 1 n 1m v
--------------loz]xxo” m e e e e --e-
K -1.14 -1.14 -1.05 -1.04
ks -0.040 ~0,038 ~0,0098 ~-0,036
ky 0,046 ~0.045 ~0,0248 ~0.047
k, ~0,028 ~0,038 -0, 0097 0. 016
K, -0.018 0,020 ~0,0030 -0.030
------------------[O]xloa ----- R - .-
¥, 2,27 2,28 2.08 2.05
k's 0.124 0.127 0,074 0.111
kg 0,105 0.097 0,031 0,075
K, 0.045 0.069 0.015 0.034
K, -0,041 0,039 -0,074 ~0.152
---------.-------(Nz]xl()a ------- L T
K, ~0.569 ~0,555 ~0.428 0,303
k, ~0,465 ~0.456 ~0.292 -0.246
kg ~0.290 ~0.309 ~0,159 ~0.146
ky ~0.069 0,066 ~0,035 ~0.058
k, ~0,045 ~0,078 -0,023 -0,022
B T Ll R ¥ --
k 1.12 1.09 0.836 0.693
k 0.853 0,338 0.50¢ . 0,400
kg 0.597 0.640 0.360 0.331
ky. 0.171 0.169 0.093 0.137
ky 0,079 0.149 0.0i2 0. 046
S --- o x 20 oL ceemenn
K, 7.7 7.76 7.99 9.28
ky -3.31 -3.70 2.40 2.37
kg -7 -2.17 4,07 3.96
K 1.40 1.58 3.00 3.3
k, 1.06 0.721 0.395 0.316

1 Sensitivity with frequency set (2, 42, 62, 74, £0) corresponding to (kl... ..ks).

11 Sensitivity with permuted frequencics (62, 74, 90, 2, 42) correaponding to
0‘1. cons ks) .

11 Scnaitivity using altornate form, Equations (2, 25, and 2.29) with [requency set
2, 42, 62, 74, 9%0), .

w Smrltlvuy' using alternate form, Equstions (2. 25 and 2, 29) with Irequency set
(62, 74, 90, 2, 42),



-y

general, increase the interferences (although it did not see

m to for the N-O
System)., We,

therefore, tend to favor the simple prescription,

The results of the Sensitivity analysis for this simple N-O system

agree with intuition in the cases where intuition gives an answer, Furthermore,
ambiguity in the results due to frequency interferences is small fo

large sensitivity vs small sensitivity,

tatively ambiguous,

r determining
but the small sensitivities may be quantj-



2,5.2 The Hydrogen-Oxygen System

The H-O system is modeled by the following set of chemical reacticns:

H2+M::2H+M k].’ K1
02+M==20+M k2,K2
OH+M=O0O+H+M k3, K3
H20+M=H+0H+M k4, K4
H+O2 =OH+O0 k5, K5
O+H2==OH+H k6’ K6
H2+OH==H20+H k7, K7
02+H2==2 OH k8’ K8
OH+OH==H20+O k9, K9

The system was assumed to react at constant temperature, 2000°, and

constant density beginning with only H_ and O2 present, The reaction

2

rates and equilibrium constants used and the initial conditions assumed are shown

in Table 2.8, Both forward and backward reactions were considered so that

there are 9 independent uncertainties.

The early and late-time concentrations are shown in Figures 2.3 and
2.4. In Figure 2.3 the concentrations of H2 and 02 which are essentially
uncharged from the initial conditions have not been shown, At early times the
only reactions which conti'ibute are numbers 1, 2, and 8 since no atomic O
or H or OH is initially present. As more O, H, and OH become availa ble,
reactions 5, 6, and 7 become dominant which results in the sharp decrease
in oxygen and hydrogen molecules and the correspondingly sharp increase of
other species at t-»lO-'3 sec. Finally, the slower reactions equilibrate
slowly until a relative steady state is reached at about t = 10-'3 sec, This
steady state is not true equilibrium in the sense that reactions 2, 5, and 8
are still quite far from equilibrium, but further relaxation to equilibrium is

extremely slow,
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Table 2,8

PARAMETERS AND INITIAL CONDITIONS FOR
CALCULATIONS OF THE H-O SYSTEM

Initial Conditions:

[H,) = 8.0 x 107 moles/cc

[02] =4,0x10"° moles/cc

Nominal Values of the Rate Coefficients:

k

= O

3

k_=4.47x10 "

[\ )

Kk 5

W o

kK =6.79x10°

> O

: 1
k;=1.23x10 2 .

Equilibrium Constants:

=578 x 10 (moles/cc)-1 sec

=1,03x10 "

K, =1,59x 10711

1
K, = 2.69x 10712 w
K,=114x 10'11

K4= 1,63x10

12

1

K_=237x10 -

5

moles/ce

-1

K. =6.76

k

N O

13

k,=1,51x10 "

-3 O

6

k,=2.20x10 i

o O

k; =1,6 x 101 "

K, =1.4

K_=9.76

K. =2,02

=4.0x10" (moles/cc)-1 sec

-1
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Figure 2.3 — Time evolution of the H-O system for the conditions in
Table 2,8, t=10"11- 10-6 gec,
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Figure 2.4 — Time evolution of the H-O system for the conditions
in Table 2.8, t=10"4 - 10 seconds.
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The rate constants shown in Table 2, 8 are taken to be the “best guesa"
vaiues and one - order of magnitude uncertainty in each rate constant was
assumed in order to demonstrate the technique. The frequencies for the

analysis were taken tobe the minimal set,

ws= (19, 59, 91, 113, 133, 143, 149, 157, 161) .

630 evenly spaced points were taken on the s interval
0 <8< 27

to evaluate the Fourier amplitudes, The analysis was run on the concentrations

at one early time and one late time,

2.5.2.1 Interpretation of Results for the H-O System at 10-8 sec

The results for the sersitivity analysis for t = 10"8 sec are shown in
Table 2,9. At this very early time, the H2 and O2 conolaentrations have not
varied from their initial values so that the sensitivity analysis showed their
Fourier amplitudes to be very small, due only to roundoff in the analysis,
The relative sensitivites of the other species, however, reflect the importance
of the various reactions and the uncertainties in their rate constants. In the
case of H, reaction 1 is the prime contributor and, therefore, its rate
coefficient is crucial in determining the accuracy of [H]. k and k are also
important since reactions 7 and 8 together produce H , The sen51tiV1t1es of

the two reactions are the same since, at early times these two reactions yield

and since the uncertainties u; = ug the results are symmetric in k7 and k
This is also the riost efficient path to produce HZO by at early times, and
since there is a one to one correspondence between [H] and [H O] the

sensitivity of these concentrations to k and k are the same,

This system has not been run with a different frequency set to deduce

the errors from interferences, It is estimated, however, for this set of results



Table 2,9
SENSITIVITY OF THE CONCENTRATIONS AT 10_8 SEC
TO UNCERTAINTIES IN THE RATE COEFFICIENTS
FOR THE H-O SYSTEM

Rate Coefficient Sensitivity Rate Cocfficient Sensitivity

Insensitive to uncertainties
in any rate constant,

Insensitive to uncertainties
in any rate constant,

-

------- [H] x 100 L oo .. [o] x 1020 .
k, 4.67 K, 1.79
kg 0.202 K -0.016
k, 0.202 k, 0.0065
kg 0.010 ke 0.0065
5
ke 0.0023 ky 2,25x10
-5
k, 0.00165 k, -1,95x10
-5 -6
k, 8. 0x10 K, 7.87x10
k 411070 kg 1.20x10°°
k -3.0x10~0 k ~8.46x107
3 7
------ lon] x 10'® R il L ) B 1020 .
ke 5.9 K, 2,03
k, -0.00203 k, 2,03
.3
ky 1.76x10 kg 0.121
ke 1.14x10°3 ky 0.0066
4 -4
k, 1.61x10 k, 8.35x10
kg 9.73x10"° k, -6.34x10"*
-5 -4
k 7.08x10 K, 4.22x10
K -7.43x10°° k -2,81x1074
4 3
kg 3.13x10°8 k, 1.33x10~
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that no credence should be given sensitivities smaller than 1 percent of the

maximum for that species.

2.5.2.2 Interpretation of Results for the H-O System at
10-3 gec

At t- 10-3 sec the system is about to make dramatic changes. Therefors,
as the rate constants are shifted, one would expect the concentrations to change
dramatically at t = 10-3 sec, This is indeed the case, and one finds the various
sensitivity results listed in Table 2,10, As predicted, reactions 5, 6, and 7 seem
to be most important overall, with the early-time reactions 1, 2, and 8 of con-
siderably less importance., It is clear that the controlling reactions affect all
the species about equally which is to be expected, since all species appear in

those reactions.

In running the H~O system to late times, difficulties were encountered
with the equation integration package. The timesteps became excessively short,
and often the input errcr criterion had to be modified in order to obtain a timely
solution., The difficulties pointed up the need to investigate more ciosely methods

for integrating the kinetic equations more economically.

2.6 COMPARISON OF THE FOURIER METHOD WITH OTHER METHODS
FOR EVALUATING THE MULTIPLE INTEGRALS

It is possible to view the Fourier method as a means for approximately
evaluating the multiple intégral of an output function over u space. If incom-
mensurate frequencies could be used, the evaluation would be exact. By using
integer frequencies, the number of points required to determine the Fourier
amplitude is finite, but an error is introduced because of the frequency inter-

ferences.

One way of obtaining the Fourier amplitudes without the troublesome inter-

ferences would be to evaluate the n-dimensional integral to which the amplitudes
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Table 2,10

SENSITIVITY OF THE CONCENTRATIONS AT 10-3 SEC
TO UNCERTAINTIES IN THE RATE COEFFICIENTS
FOR THE H-O SYSTEM

Rate Coefficient Sensitivity Rate Cocfficient Sensitivity
—eeemdxne® oL (M x20%-...._
kg -3.7 kg 1.92
k, -0,346 k, 1,92

kg -0,313 ks. 0.122
kg -0,172 kg 0.102

k, ~0,108 k, 0.061
k, -0,101 ky 0.0468
kg -0, 0905 k, 0.0439
ky -0,0491 k, 0.0175
ky 0.0119 ky -0, 00318

RN -0 [E3 ¥ o] x10'% ...

ks -1,77 kg 6,77

k, -0,153 k, 0.420
kg -0.089 k, 0.161
ky -0.070 kg 0.162
k, : ~0,047 kg 0.145
k, -0,047 k, 9,116
kg -0,044 kg 0,115
k, ~0,031 k, 0.10

k, 0.0091 fty -0,061

e L B ¥ (0] x 10°- - ..

kg 4.63 kg 2,52

k, 0.281 k, 0,237
kg 0.19¢ kg 0.142
kg 0,135 kg 0.114
ky 0.116 ' k, 0.114
k, 0.115 k, 0.0718
k 0.0964 kg 0.0614
k, 0, 0876 ky 0.0358
ky -0.0359 kg -0, 00851
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correspond (see Equation 2. 22) by an alternate method, One method which was
tried was based on simple Monte Carlo integration. In this section we compare
the Fourier method and the corresponding Monte Carlo calculations. Another
equivalent form was investigated, namely integral I3 in Appendix C which is an

n-dimensional s integration equal to the u integral transformed by the relations

u, = sin w, 8 ) i=1,n (2.39)
when the frequencies w, are those associated with the Fourier method. The
function used in these comparisons was the "simulation function," Equation (3.3)

with

C®=0.1, C(0)=1

t=1.5 .

The results for the Fourier sine amplitudes of the input frequencies are

denoted Ai » i=1, 6, The frequencies were
(1, 21, 31, 37, 45, 49) |,

201 points were used on the interval (0, 27) (no aliases interference of order less
than 5). The amplitudes were run for 5 different permutations of frequencies,
each of which defined a different path through the space., The results are shown
in Table 2.11, The quantity in the column labeled "A" is the average ampli-

tude, and the "Maximum Error" is

IA -A .
| maximum

A
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and serves as an estimate of the errors introduced by interferences.

The same one-dimensional integral was performed by Monte Carlo
selecting the s points on the interval (0, 2n) at random, and calculating an

approximate integral

N
1L=—1—N Z sin oy 8, flk (), ..., k)
i=1

The results for the amplitudes for successive samples of 200 points is shown in
Table 2.12, These results show that the number of points required by this
Monte Carlo procedure to give statistical accuracy is much greater than the
number required in the Fourier analysis, Stated another way, for 200 points,
the degree of accuracy of the Fourier method far surpe;sses that of the Monte

Carlo integration.

Another method was to select six values of u at random for each func-

tion evaluation, and approximate the integral by

27—'”“
I——
1~ (u, /u®y®

The results are shown in Table 2. 13 for two successive sets of 200 points,
While the error is much less in this case than in performing the one-dimensional
Monte Carlo integral, the expected errors in a particular 200 point sample still

greatly exceeds the errors in the Fourier sampling,

Monte Carlo was also used to evaluate the six-dimensional integral
(13 of Appendix C) in s space choosing six independent values of s to insert
separately into the integral. The results were comparable to those in Table 2,13

and will not be given.
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3. OPTIMIZATION OF AN OUTPUT FUNCTION
WITH RESPECT TO VARIATIONS OF THE
RATE COEFFICIENTS

An alternate method for investigating the variation of the calculated con-
centrations with variations of the rate constants was investigated in which the
concentrations were optimized over the multi-dimensional domain of rate con-

stants bounded by the maximum and minimum estimated uncertainties,

Several methods for optimizing functions of many variables have been
well automated and are operational on the S3 computer, A code CUK was
written which solves the problem by the method of steepest ascents. This
method proceeds by choosing the direction of the maximum gradient from a
given starting point, and following that line to an extremum, The process is
repeated by taking this as a new starting point, constructing a new line, following
it to its extremum, and so forth until a relative extremum in the many dimensional
space is found. A refinement to this technique using a sophisticated algorithm due
to Davidon(l) and modified by Fletcher and Powell(z) and Stewart(3) is embodied
in subroutines DMIN1 and DMIN2, In the Davidon algorithm, the search for a
minimum proceeds along a line which does not exactly coincide with the gradient,
At each step a new direction is chosen dependent not only on the gradient at the
new starting point, but also on the previous history of the search, For some
functions this procecure is much more efficient than one using the gradient
directly, DMINI1 requires a subroutine which computes the gradient, which is
essentially that described below, see Section 3,1, DMIN2 estimates the gradient
by repeated evaluation of the function, Neither DMIN1 nor DMIN? are capable of
handling constraints, and an extension of Davidon's method to include constraints

has been programmed into a subroutine called KEELE,
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3.1 FORMULATION OF THE GRADIENTS FOR THE METHOD OF
STEEPEST ASCENTS

Both DMIN1 and CUK require the gradient of the functions to be extremized.

For the special class of output functions consisting of species concentrations as

a function of time, the gradient may be integrated along with the rate equations to

obtain gradients at any particular time.
A set of rate equations may be formally written
n
dC, . .
_1=§:€Jk I | oG, 1)
dt i'] 2 ’
=1 L L(j)

where the index j label (separately) reactions in both forward and backward

directions. L(j) is the set of indices corresponding to the reactant concentra-

(3.1)

tions on the destruction side of the jth equation. e?; is the stoichiometric coeffi-

cient of Ci if Ci is produced in the jth reaction, is equalto -1 if Ci is
destroyed by the reaction, and is equal to 0 if Ci does not appear in the

equation or appears with the same stoichiometric coefficient on both sides of

the reaction. m(j, £) is the stoichiometric coefficient of Cf on the destruction

side of the equation.

The partial derivatives of the ith concentration with respect to the p th

rate coefficient, Cip , are found by differentiating Equation (3.1) with respect to kp

aC acC
ip_ 8 __i_p m(p,{)
3t ot ok ‘i l—l (Cy)
p LeL(p)
k * f
g [ e
P feLp¥)
n n |
+ Z eli' kj Zm(p’l.)(cf')m(p, £')-1 Cp H Cm(p,l)
1 =1 P gerqp 1
141"

(3.2)
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p* labels the reverse of reaction p, and the other symbols are defined after
Equation (3.1). The second term on the right side of Equation (3. 2) makes use
of the assumption that kp */kp is a constant over the uncertainty space (i.e.,
there is no uncertainty in the equilibrium constant). This set of equations for

p =1, nforms a linear set of equations in Cip which can be integrated to
obtain Ci, p(t) by the same Gear algorithm used for integrating the basic

rate equations, A version of the KEM code has been written to accomplish this.

3.2 TEST CALCULATIONS

Two types of test calculations were used to investigate the various methods
of optimization, First, the properties of a "simulation function' were investigated
to determ{ne the consistency and relative economy of the various methods.
Secondly, the CUK method was applied to the nitrogen-oxygen (N-O) chemical

system,

A "gimulation function" was suggested by Professor Shuler(4) which is not
the solution to any known set of kinetic equations, but which possesses some of

the same characteristics as kinetic solutions. The function is given by

-1
. &, t
C, (1) = {C;(0) C,(x) [01(0)+ {Cl(oo)- 01(0)$ e ]

-kt
2 2 2 3
CZ(O) 03(0) k2k4t e

3 3 2
C3(0) + Cy(0) gkt 2

( s )
-k3t k1 +k2

2 3,3
C4(0) 05(0) k4t 1-e )e
+ . B.3)

2 2 2.3
C,(0)C4(0) + Cy(0) Kk t™ + C,(0) C,(O)k Kt

Cl(t) is a function of six rate constants as well as the time. The following substi-

tution was made,
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k =k’ e (3.4)
8o that the function is viewed as a function of u in the range

0 0 .
-uisuisui , i=1,6 . (3. 5)

The time t was fixed at 1.5 so that only the functional dependence in u remains,

It is desirable to confine the domain of interest in u space to be contained
within some n-dimensional box. Since so'ne of the methods are designed for
unconstrained systems, the above function was multiplied by an importance func-
tion to form the "associated simulation function"

& 20
igl i i

P@) = e x C, ) (3.6)
where C1 (t) is given by Equation (3, 3),

A comparison was made between the four methods: CUK, DMIN1, DMIN2,
and KEELE, The output function is the associated simulation function described

above, with the parameters shown in Table 3.1,

Table 3,1

PARAMETERS FOR THE OPTIMIZATION METHOD COMPARISON

Rate coefficient nominal values: k. =1,i=1, ¢
Rate coefficient uncertainties: u =1,i=1,¢
t=1.5

Ci(0)=1 , 1i=1, €

C,e) =0.1
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The results using the four mecthods are shown in Table 3, 2; all using comparable
minimum step sizes of 10_5. These results show that, for this function of six

variables, the methods appear to be consistent,

Two starting points were tried, and for this output function, the saine
end point is reached. For complicated output functions, one would not expect

the same end point for different starting points.

The cost of these calculations are all proportional to both number of func-
tion evaluations and the number of derivative evaluations. The relative economy
of the CUK method over the more sophisticated methods led us to concentrate our
further investigation on this method. For functions more complicated than the

above, it is anticipated that the othcr methods might well be superior,

The CUK code was uscd on the associated simulation function for different
parameters, and with different variations in the method. In the sets of results
shown below, the parametcrs entering the associated simulation function were

those given in Table 3, 3.

Table 3,3

PARAMETERS ENTERING THE ASSOCIATED SIMULATION
FUNCTION IN TEST PROBLEMS BELOW

Rate coefficients nominal ko =1, K = 2, ko = 3,
1 2 3

values: o o o .

k4=4, k5=5, k6 =6

C,(0)=1, i=1,8,
Cl(°°) =0.1

t=1.5
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Table 3.2

RESULTS OF COMPARISON OF OPTIMIZATION ME THODS
FOR THE ASSOCIATED SIMULATION FUNCTION

Part A: Minimum from Starting Point

o

u, = i=1,6
1
CUK DMIN1 DMIN2 KEELE
Function 0.356846 0.356843 0.356755 0.356866
Value
k, 1.11918 1.11994 1.12342 1.11039
k, 0.9149717 0.909268 0.914298 0. 915617
k, 1.45013 1.44725 1.41251 1.45692
k, 0.679556 0. 669602 0.670227 0. 677832
k, 1.31851 1.32621 1.31683 1.32631
ke 1.12414 1.12282 1.12951 1.12901
u 0.112598 0.113276 0.116388 0.112784
u, -0, 088856 -0. 095116 -0,089598  -0.088157
ug 0.371653 0.369666 0.345370 0.376326
u, -0.386315 -0.401071 -0,400138  -0.388856
u, 0.276503 0.282322 0. 275225 0.282404
ug 0.117014 0.115841 0.121783 0.121343
No. of Function Calls 46 115+ 184 49
No. of Gradient Calls 10 25 24
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O
Table 3.2 (Contd)

Part B: Minimum from Starting Point

) u? ==0,1, i =1,6
1
CUK DMIN1 CMIN2 KEELE
’ Functi
. ction 0.356845 0.356839 0.356755 0,356841
Value
k, 1.12464 1.13471 1.12343 1.12512
k, 0.916838 0.924054 0.914097 0.91981¢
kg 1.44718 1.44315 1.41256 1.45030
k, 0.670045 0.669190 0.670133 0.673464
ke 1.29726 1.30969 1.31687 1.31326
k, 1.12978 1.14590 1.12904 1.13609
u, 0.117460 0.126376 0.116384 0.117894
u, -0. 086825 -0. 078985 -0.089819  -0.083581
ug 0.369616 0.366831 0.345401 0.371773
u, 0.400410 -0.401689 -0.400280  -0.395321
u, 0.260252 0.269792 0.275258 0.272509
ug 0.122021 0.136189 0.121367 0.127595
No. of Function Calls 40 804 284 51
No. of Gradient Calls 8 100 25
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The results for both maximization and minimization of the associated
simulation function are shown in Table 3.4. In Table 3.4, Part A, the maximum
uncertainty in the rate coefficients is u;) = 0.5, in Part B the uncertainty is

o

assumedtobe u =1,
1

3.2,1 Discussion of Table 3.4

Two methods were used to search for the maximum values of the function,
constrained and unconstrained, In the constrained method, values of u were not

allowed to be outside the box,

u =su. 3.7)

When a gradient indicated that larger values of the function occurred outside this
box, the direction of search was taken along the boundary, The results for the
constrained and unconstrained maxima are therefore different for cases in which

the maximum lies outside the box,

Each optimum of the function was evaluated for 2 or 3 starting points ,
designated by the row labeled initial point, The columns labeled +0.1 denote the

initial point

ui/u(i)=:bO.1 , i=1,6 . (3.8)
The column denoted ""corner" represents an initial point with coordinates given by
the footnote asterisk,. The rows denoted ki are the 6 values of the rate coeffi-
cients specifying the optimal values, and the ui/u;) are then coordinates in

u space normalized to a unit hypercube. In Part A, for example, the maximum

unconstrained value of the associated simulation function is found at

(o]
u5/u5 =-1,4
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Table 3.4

RESULTS OF OPTIMIZATION OF THE
ASSOCIATED SIMULATION FUNCTION (ASF)

Part A: Rate Constant Uncertainties

u‘i’ = 0.5, i=1,6

MINIMUM , MAXIMUM
Constrained Unconstrained
Initial Point 0,1 -0,1 Corner* 0.1 -0,1 Corner** 0.1 Corner**
k, 1.336502 | 1.336492 | 1.336565 0.042881( 0,942877| 0.942912 . 0.958178 | 0,986023
k, 1,994806 | 1,994808 | 1,994801 2,038508| 2,038510 2,038437 2,038124 | 2,54384
ky 3,732751 | 3,732694 | 3,733078 1.819592| 1,819592| 1.819592 1,699020 | 2,84773
k, 3,867460 | 3.867470 | 3.867411 4,717388( 4.777428| 4,777113 4.720191 | 5,7156707
kg 5.012121 | S,012122 | 5,012120 4,998960( 4.998960| 4.999181 4,999231 | 2.47980
kg 6.000996 | 6.000998 | 6,000997 5.999934| 6.999934] 5,999980 5.999951 | 4,99548
0
u /oy 0.58 0.58 0.58 -0,12 -0,12 -0.12 -0,087  |-0,028
.,2/..; -0,004 0,007 -0,007 0,04 0,04 0.04 0.004 0.480
..3/..; 0.44 0,44 0,44 -1,0- |-10 -1,0 -1,13 -0,1
..4/..‘4’ -6,087 -0, 069 0,070 0.35 0.35 0,38 0,33 0.71
| "s/“: 0,005 0, 004 0,00 -0,0005 |-0,0004 | -0,0005 -0,003 -1,4
"e/“: 0.001 -0, 001 -0,001 -5,00005 | o0.00002 |-o0,00004 0.00002 |-0,367
Optimal Value | 0,130960 0.130968 | 0.130908 0.173318| 0,173318| 0,173318 0.174365 | 0.161049
of the ASM
fio. ‘of Rilwation; | yipg 15 56 62 57 65 81 58
Evaluations
No, of Derivativel 39 | 20 16 16 14 16 15 4
Evaluations ] .

*Initial Point: ’G/u:’ = (0.9, -0.8, 0,9, -0,9, 0,5, -0.5) **Initial Point; ’G/u:’ = (-0,5, 0,9, -0,7, 0,95, -0,95, -Q.5)

o



Table 3.4 (Contd)

Part B: Rate Constant Uncertainties
o]

u, =1, i =1, 6
i
MINIMUM MAXIMUM
Unconstrained Constrained
initial Point 0,1 Corner* . 0,1 Corner** 0,1 Corner**
ky 1,732245 1,732198 0,972464 | 0, 891551 0.984629| 0,885884
kg 1,988241 1,988255 2,204691 | 3.334084 2,228403| 2,814347
ka 4,172935 4,172686 1,103638 | 2.881029 0,873297( 2,93961
k, 3, 814059 3,814118 7.507727 | 10, 87313 7.151887| 14,42193
kg 5, 067699 5.067709 4,997028 | 1,839397 4,998524] 1,49980
ke 8. 006362 6.006398 5.999815] 3.641476 5.999911| 3,740073
v 0.55 0,55 -0, 028 -0,11 -0,015 -0,12
u, -0, 005 -0, 005 0,097 0.51 0,11 0,34
uy 0,33 0,33 1,0 -0,04 -1,23 -0,02
u, -0, 047 -0, 047 0,63 1.0 0,58 1,28
ug 0,014 0,014 -0,0006 |-1,0 -0,0004 | -1.2
g 0.002 0,002 -0,00002 | -0,49 -0,0001 | -0,47
Optimal Value
of the ASM 0,126953 0,126953 0,352646 | 1.25303 0.376890] 1.49207
mc:: as=10"% 56 69 ‘ 51 45 73 39
NCHION Ag=10- a2 38 26
alua-
fona
o, of
riva- As=10"3| 15 19 12 10 30 s
ive  As=10-2 9 10 ?
valuations

*Initial Point: u = (0,95, -0,95, 0,96, -0,95, 0,7, -0,9) **initial Point: u (-0.5, 0,9, -0,7, 0,95, -0,95, -0, 5)



a point which is outside the uncertainty box, while in the constrained case, u3

lies on the surface of the box, u3 = -ug .

In Part A, with the estimated uncertainty u? =0,5, i =1, 6 the optimum
function value is found to be independent of the initial point of the search for
both the minimum and constrained maximum cases, but the unconstrained case
finds different maxima, In Part B, even the maximum found in the constrained
search is dependent on the initial point. This emphasizes the fact that such a

search finds only a relative optimum which may be path dependent.

Finally, some words will be said about the numbers of function and deriva-
tive evaluations necessary to reach the optimum. These numbers depend
strongly on the complexity of the output function. The method used by the CUK
code is to select a direction based on a gradient calculation, and then search
along that path with ever increasing distance until a functional optimum is
found (or, if the search is constrained, until a boundary is reached). At this
point, another gradient is calculated and the search procceds along the new direc-~
tion. The fact that the number of gradient calculations is small compared with
the number of functional evaluations indicates that the gradient varies relatively
slowly in the directions of search. Consistent with this observation are the last
two rows in Table 3.4(B) which show that increasing the minimum step size

2 to 10-2 (therefore increasing the average step size) reduces the

from 10~
number of function evaluations more than it reduces the number of gradient cal-

culations,

An interesting feature of the associated simulation function is that the
hyper-corner in which the maximum occurs is the reflection through the origin
of the hyper-corner where the minimum is found (there are slight deviations
from this principle in the case of u, in Part A for both the maximum and

6

minimum. In each case, however, the values of u6 are small so that difference

of hyper-corner could be the effect of round-off error. )
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3.3 RESULTS FOR THE N-O CHEMICAL SYSTEM

The N-O system investigated was the same as that for which test calcula-

tions were run using the Fourier methcd. The set of reactions chosen was:

=2

02+M oO+M kl’ K1
N2+M<-2N+M k2, K2
NO+M&E&N+O+M k3. K3
N2+O::NO+N k4,K4
02+N._NO+N k5, K5

The forward rate constants, ki , and the equilibrium constants Ki were chosen

as described in Table 2.4, with the exception that K_ was set equal to 0,59

5
instead of 59, 0. The uncertainty in each rate constant was assumed to be a

+
factor 10 2, that is, the rate coefficients were assumed to lie in the range

u

k. =k e
1 1

i (3.9)

-4.606 < u, <4.606 .

The concentrations were initialized as shown in Table 3.5, and the system
allowed to react isothermally at constant density until t = 107 sec when the
various species reach concentrations which were considered as output functions
depending on the various rate coefficient uncertainties., The CUK code was used
which is strictly a steepest ascents calculation. The hyperplanes defining the
boundaries according to Equation (3.10) were taken to absolute constraints not to

be violated.

The results of the optimization is summarized in Table 3,5 for the maximum

of each concentration, and in Table 3.6 for the minimum of each concentration,




|8

i)

&

Table 3.5

RESULTS FOR THE MAXIMUM CONCENTRATIONS

FOR THE N-O SYSTEM

Initial Maximum Number of Number of Beundary
Concentration Concentration Function Gradient Statvs
(moles/cm3) (moles/cma) Evaluations  Evaluations
after 10~ sec
-8 -8

O2 2.00x10 1.98x 10 22 9 W ee--a

o 0 4,00x10°8 13 5 T

N, 8.00x10°  g.00x1078 22 9. em-e-

N 0 8,58 x 10°° 17 10 totas
No 0 4.70x107° 38 16 M--M-

Table 3.6
RESULTS FOR THE MINIMUM CONCENTRATIONS
FOR THE N-O SYSTEM
Initial Minimum Number of  Numberof  Boundary
Concentration  Concentration Function Gradient Status
(moles/cm3) (moles/cm3) Evaluations Evaluations
after 10-4 sec

o, 2.00x10°  2,34x 10712 16 9 +4dta
o 0 9.12x 10"11 17 9 ——4-
N, 8.00x100  3.69x10°2 25 10 PR
N 0 1.77x 10718 14 7 ———et
NO 0 5.61x 10713 18 10 PO
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In both tables, the columns need no further explanation except for the
column designatcd "Boundary Status." The codes +, -, M have a meaning best
described by example. The boundary status of N in Table 3.5 is +-+++,

This means kl’ k3, k 4 and k5 equal to their upper experimental uncertainty

limit and k2 equals to its lower expcrimental uncertainty limit will produce

the maximum concentration of N at 10-4 sec. Ifan M appears in the ith position
from the left, the optimal value of the concentration occurred for a value of the

ith rate coefficient between its upper and lower experimental unccrtainties.

Only in the case of the maximization of NO did the extremum lie at an interior

point for a particular rate constant.

Another observation may be made that the hyper -corner in which the
maximum is found is not the reflection of that for the minimum of the same
species. In this way this chemical system is more complicated than the simula-
tion function considcred earlier. This may be understood in terms of the
chemical kinetics by consideration of an example, the N concentration. In
Table 3.6, the N concentration is shown to be minimized by maximizing k5 .
Referring to the reaction set on page 59 this is reasonable since reaction 5
contributes strongly in the forward direction since, by minimizing k]. , there
is an abundance of 02 present. On the other hand, Table 3.5 also shows that
the N concentrations will be maximized by maximizing k5 . In this case, k1
is large so that there is an abundance of O atoms, and the reverse of reaction 5
dominates. Therefore, to increase k5 increases the N concentration, It is

questionable if results such as this could have becn reached by chemical intuition

alone, and we feel this exchange demonstrates a useful application of the method.

In addition to the information prcscnted in Tables 3.5 and 3.6, one also
has values of the gradients and output function at various points along a path from
an initial point and the final optimum which can be useful and give a measurc of the

relative sensitivity of the output function to uncertaintics in the various rate
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coefficients, Thc method has the characteristic that the sampling of points
emphasizes either l.cge values or small values d a particular output function
which might be suitable for problems in which either values of a concentration
above or below some threshold is of interest, for example, in the investiga-~
tion of the onset of radar blackout in the atmosphere as a function of various

rate coefficients.

The optimization methods have the disadvantage that a separate analysis
must be made for each output function of interest, whereas, in the Fourier method,
the sensitivity of all species in the system may be investigated by using the same

sample of points,

The cost of the optimization procedure (for one concentration) is less
than the Fourier method in the sense that fewer function evaluations are necessary,
This effect is more than balanced, however, by the increased cost required to
evaluate the gradients since, for n-independent reaction rates the cost of per-
forming the tlme integration of the derivatives is approximately n2 times greater
than a calculation in which no gradients are computed, It may be that use of an
optimization method such as DMIN2 or the SIMPLEX method(s) which replaces the
gradient calculations by differences of previously calculated output functions may

present a more economical alternative,
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4. SUMMARY AND FUTURE EFFORTS

Two types of methods have been developed to investigate the sensitivity
of the results of complex calculations to uncertainties in the parameters entering
the calculations, the Fourier method, and the optimization methods, For a particulax
output function, the Fourier method provides a sensitivity number for each
independent reaction rate coefficient whose magnitude characterizes the relative
importance of the uncertainty in that coefficient in deterniining the uncertainty in
the output function. This relative importance is an average importance over
the many dimensional domain of the reaction rates consistent with the experimental
uncertainty in each rate. The optimization methods investigate both the value of
the output function and its gradient with respect to the rate coefficients. The
latter is a measure of local sensitivity at a point, The uncertainty space is not
sampled uniformly, but regions with either large or small values of the output
function are treated preferentially., These two methods have application to

distinctly different classes of problems,

For the real chemical systems considered so far, there are some features
of the sensitivity results that can be predicted before the calculation. There are
others that can not be easily predicted beforehand, but can be verified qualitatively
by hindsight, The quantitative results (which of two important rate uncertainties
is most important) are ofteh extremely hard to predict on intuitive grounds alone,

and demonstrate the utility of the methods,

At present we feel that both methods are useful in answering different
questions about certain systems, Since the Fourier method is least understood,
and appears to be most promising from the standpoint of economy, our immediate

plans are to concentrate on this method. First priority is to apply the method to a
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wider class of non-equilibrium chemistry problems, in order to get a fecl for the
method, It will be advantageous for large systems (depending on more than, say,
20 independent reactions) to learn ways to split the system up into certain indepen-
dent pieces for separate analysis. Another intercsting question which will be
addresscd is to investigate alternate ways to calculate the multiple integral form

of the Fourier coefficient using quadrature rules., This would eliminate the trouble-

some effects of interferences between frequencies,

There are improved optimization techniques which do not requir - the
evaluation of the gradient, which may makc these methods less expensive and,
thereforc, more useful. With these methods there is always the problem that an
optimum is a local optimum and a global optimum requires many calculations
beginning from different initial points. The selection of initial points is again a
sampling problem, and it appears that considerable experience would be necessary

to adequately investigate the uncertainty domain,

Another area for study is the selection of integration routines which will
give results more economically, This is important since, for large systems,
the calculation of the output function is the major expense. Perhaps accuracy

could be sacrificed for specd in a sensitivity analysis,

Finally, the methods should be applied to a wide range of problems outside
the area of non-cquilibrium chemistry, for example, in the area of socjal systems
modeling, or quality control modeling to determine their applicability to such

systems,
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Appendix A

EQUIVALENCE OF RATIONAL AND
INTEGER FREQUENCIES

Consider

T
I=1im= J dsg(smwls, voe, Bin sz, caos smst) (A.1)
0

where only a finite number, M, of rational frequencies are present, By rational

frequencies we mean that they may be represented by

p
w =1
jqj

where pj and qj are relatively prime integers.

Let
M

q= qu
j=1

and

EQ):Q) ’

J

Cpude

then E q:j = w]! is an integer, and Equation (A.1) may be rewritten
T

1] — —
lim 1 ds g (sinw, s/q, ..., sin w’ s/q) . (A.2)
S 1 M
0

But since g is a periodic function of s'= s/a with period 27 since all the
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w, are integers, this gives

J

21
I=-2-1;f ds' g(sin w! 8', ..., sin wl;as')

. (A.3)
0 1

The infinite integral in Equation (A.1) with rational frequencies is therefore equal

to a finite integral with integer frequencies,
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Appendix B

EXTRACTION OF FOURIER AMPLITUDES
BY A FINITE SUM

The purpose of this Appendix is to show that one can evaluate the Fourier

amplitudes of a periodic function f(s) by the following prescription

A N (sin (27n 4
n 2 N
L ZA f(2n -L) + alias amplitudes (B.1)
B o) cos (2wn l) o
n 1=1 YUN

where An is defined in Equation (2.7), and Bn is the corresponding cosine ampli-
tude. n is an integer >0 and f(2m) = £(0). We shall prove-this relation for
An » the sine amplitudes only, although the proof can be directly extended to the

cosine amplitudes, B . Consider

A¥*
n

N
E%Z nzm—f(zui) (B. 2)
[:

where w
fs)=B + (A _sinms +B_ cos ms) .
o E : m m

m=1

Substituting f into A; one must evaluate a sum of terms

N
ar < Z Im@2™ /N, Ay, Sin@rmi/N) , (B.3)
2=1 '
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N
A* _ lﬁ Re Z [ezni(mm)l/N_ e2ni(n-m)l/N] Am (B.4)

n, m
1=1
27i(n+m) 27i(n-m)
=-lRe e 3 -1 - e, =1 (B_5)
N e2'ru(n+m)/ N -1 e2m(n—m) /N -1 m

where we have used the formula

N
Z - o™ oy

£=1

In the brackets each term vanishes unless the denominator vanishes sincz
e2mp =1 for p integer. Only special values of m relative to n will t;here—
fore contribute to A; , and those are, for the first and second terms in the

bracket, respectively,

m+n=qgN condition1 , (B.6)
and
|m-n| =qN condition2 , B.7)

where q is an integer > 0. Forq=0, only m =n contributes, For q >1,
let the special values of m satisfying conditions 1 and 2 be denoted mi‘(q, n)
and m;(q, n), respectively. Then, for N> n, m"i(q, n) will be distinct from
mg(q, n) (n = 0 is an expection which is uninteresting), and every such m*, and

1 1]
m%‘ will contribute to A;. Therefore

00

A;:An+z [Ami‘(q,n)+Am§(q,n)] C (B. 8)
9=1 '
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The sum in the above expression may be viewed as an error term to the evalua-
tion An . The amplitudes in the error term are called "alias amplitudes" since
an amplitude for frequency m*(q, n) masquarades as one for frequency n. For

N=~«, the error terms become small,

As discussed in Section 2, 3.2 the input frequencies are chosen to be
odd integers which have no interactions of order <5 which coincide with
the input frequencies. Since the alias frequencies are equivalent to other
frequencies, it is consistent to choose N sufficiently great that there are no
aliases of interferences of order <5 which coincide with input frequencies either,

Thus, N is chosen by trial and error so that condition 1 is satisfied,

wi+umi‘qN (B.9)

where wi is an input frequency and wm are all input frequencies and inter-
ferences of order less than or equal to 4. One can show that a sufficient
condition to satisfy Equations (B.6) and (B.7) is

N>d4w .+ N . (B.10)

even

but by trial-and-error values of N slightly smaller than 4 W o ax may be found.
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Appendix C

A THEOREM

In this Appendix we present a theorem which relates the Fourier amplitude
of a function to an average of the output function over the n-dimensional space

spanned by the rate coefficient uncertainties.

Theoreii.: Assume f(ul, uz, SoCr un) is a polynomial of order p-1 in the
u's, over the domain

uo u <|.lo
184 Yy

uo u <u°
ns"nS Ty :

Assume also a set of integer input frequencies wi , i=1, which are chosen
so that no interferences of the order of less than p coincide with any input

frequency. Then the Fourier amplitude corresponding to the Lth input frequency
satisfies the following relation:

2

EEL I ds sin w L5 f(ul(s), u (s) eee U (S))
o

o
1 2 n
L fu, o)
s N I du I du ... f L (C.1)
n 1 o 2 )

G, 2 2° u? n °Y1- (v, /u‘%
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where

o .
u(s)=u, sinw,8 .
Proof: i i i

For convenierce the two integrals in Equation (C.1) will be referred to as I

1

and I2 , respectively. The first step is to transform 12 by the transformation

u, =u’ sin w s i=1, n C.2) "

i i i ’ *
then 2T 2T 2T
1 .
0 0 0
313 .

The next step is to show that I3 = I1 .

Since f is a polynomial of degree p-1, we can expand it in a Maclaurin

. = . . 3 + LN ] )
f(ul, .o un) fo + E f1 u + z fljuluj (C.4)
i i,j
where the last term contains a product of p-1 u's. Substituting Equation (C.2)

series

for the u, i =1, n, one obtains a series containing products of the form

n ) |
sin (wlsl)sin (wzsz) . (C.5)

These terms may be expanded using the relation
n
( i, si) i inws,
e =e
Pei‘forming the 8, integrations one ttus obtains
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n n
1 02 02

f
N EE 0z 1
I3'”’L(z T2 T TLiigg % Y +) (C.6)
i=1 i, j=1

where all terms of f which are differentiated an odd number of time in u
and an even number of times in all other u's contribute through derivatives

of order p-1,

If one makes the substitution

u, = u? sin w, 8 (C.7)
i i i

into the Equation (C.4) and substitutes that into Il’ one finds terms of the form

n, n,
sin (wl 8) sin(w2 8) ... (C.8)

which is slightly different from Equation (C.5) in that the same s appears in
each term in the product. The result is that when the expansion is made to
reduce such a teru: to one linear in the sines or cosines, frequencies appear
which are interferences of the input frequencies. In fact, since f is of

order p-1 in the u's, interference frequencies which are of order p-1

will appear in the spectrum of f. But the frequency set was hypothesized to
be free of p-1 th order interferences coinciding with an input frequency such as
wL' Therefore, only the terms in f which are of odd order in uL and even
order in all other u's will contribute. PBut that is the same set of terms as

appears in I3 . Therefore,

L =1 . . (C.9)



In the case that f is of higher order than p-1 in the u's, one can
estimate the error between I1 and 13 3 (I2 = I3 independent of frequencies.) For
definiteness, choose p = 5, which characterize the frequency sets used in the

applications in Section 2, and assuize f has a fifth order component

fj kfmq ujukuf umuq (C.10)

with j, k, £, m, q all different. Substituting according to Equation (C. 2) into f
in 13 gives zero contribution to 13
this fifth order term into 1. according to Equation (C.7), one can expand the

1
product (C.10) to be

. On the other hand, if one substitutes for

i + +w tw. + - + + -
fIk Im sin (w1 w, twg w4 ws)s sin (w1 wz + w3 w4 w5) s
+ = = - si =
16 + asin(w1 wz + wy = W, w5)s sin (a,v1 + w, + Wg ~w, + ws)s
+ o o] . (C. 11)

If there exist frequencies wj, Wy eoes wq such that one of the 16 interference

k
frequencies in Equation (C.11) coincides with w_ , the contribution from the fifth

L ]
order term will contribute to I1 . Since the order of this contribution is

we can write for a general function f,

1, =1, +o¢®/2®D) (C.12)
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